

Support Vector Machines via Multilevel Label Propagation

Bachelorarbeitsabschlußpräsentation, Betreuer: Sebastian Schlag, Christian Schulz Matthias Schmitt | 11.07.2018

Gliederung

- Einführung
- Vorausgehende Forschung
- 3 KaMLSVM
- 4 Evaluation

Matthias Schmitt - Support Vector Machines via Multilevel Label Propagation

Motivation

"Machine learning explores the study and construction of algorithms that can learn from and make predictions on data."

Motivation

"Data is the oil of the 21st century."

Matthias Schmitt - Support Vector Machines via Multilevel Label Propagation

11.07.2018

Klassifizierung

Training: Datenpunkte $X_i \dots X_n$ und zugehörige Klassen $y_i \dots y_n$

Beispiel: forest Datensatz

Features - Höhe, Gefälle, Sonnenstunden, Bodentyp ...

Klasse - eine von 7 Baumarten

Ziel: neue Datenpunkte klassifizieren, also y_{n+1} für X_{n+1} bestimmen

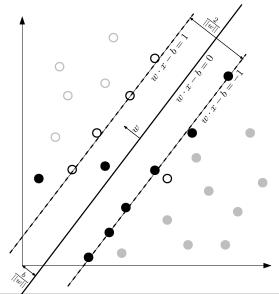
Hyperebene finden, die die Klassen mit größtmöglichem Abstand trennt

minimiere
$$\frac{1}{2}\|w\|^2 + C\sum_{i=1}^n \xi_i$$

unter $y_i(w\cdot x_i - b) \geq 1 - \xi_i, \quad \xi_i \geq 0.$

neue Datenpunkte anhand der Hyperebene klassifizieren

$$y_{n+1} = \operatorname{sign}(w \cdot x_{n+1} - b)$$



Vorausgehende Forschung

KaMLSVM

Problem: nicht linear separierbare Klassen sind nicht mit einer Hyperebene zu trennen

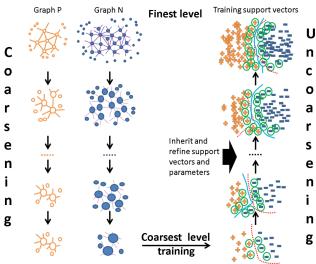
Kernel Trick

linearer Klassifizierer lernt nicht lineare Entscheidungsgrenze

Zeitkompletxität

- zwischen $O(n^2)$ und $O(n^3)$
- für optimale Parameter viele Modelle trainieren
- Problem mit großen Datensätzen (Hunderttausend bis Millionen Datenpunkte)
- → multilevel Ansatz

Multilevel Support Vector Machine



aus "Engineering fast multilevel support vector machines" (2018) by Sadrfaridpour et.al.

Multilevel Support Vector Machine

mlsvm-IIS (2015)

iterative independent set

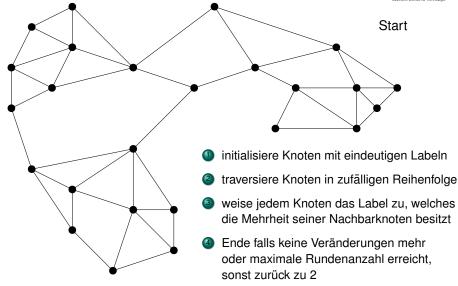
mlsvm-AMG (2016)

algebraic multigrid

"Engineering fast multilevel support vector machines" (2018)

Verfeinerung des multilevel Prozesses

fast linearzeit Algorithmus zur Community-Erkennung



Einführung

Vorausgehende Forschung

KaMLSVM 0000000 Evaluation

Matthias Schmitt - Support Vector Machines via Multilevel Label Propagation

Label Propagation Algorithmus (2007) Initialisierung initialisiere Knoten mit eindeutigen Labeln traversiere Knoten in zufälligen Reihenfolge weise jedem Knoten das Label zu, welches die Mehrheit seiner Nachbarknoten besitzt Ende falls keine Veränderungen mehr oder maximale Rundenanzahl erreicht,

Vorausgehende Forschung

KaMLSVM

sonst zurück zu 2

Label Propagation Algorithmus (2007) Iteration 1 initialisiere Knoten mit eindeutigen Labeln traversiere Knoten in zufälligen Reihenfolge weise jedem Knoten das Label zu, welches die Mehrheit seiner Nachbarknoten besitzt Ende falls keine Veränderungen mehr

Vorausgehende Forschung

KaMLSVM 0000000

oder maximale Rundenanzahl erreicht,

sonst zurück zu 2

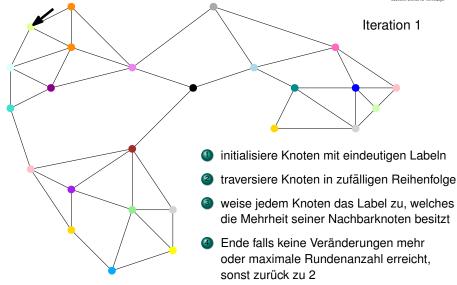
Label Propagation Algorithmus (2007) Iteration 1 initialisiere Knoten mit eindeutigen Labeln traversiere Knoten in zufälligen Reihenfolge weise jedem Knoten das Label zu, welches die Mehrheit seiner Nachbarknoten besitzt Ende falls keine Veränderungen mehr

Vorausgehende Forschung

OOOOOOO

sonst zurück zu 2

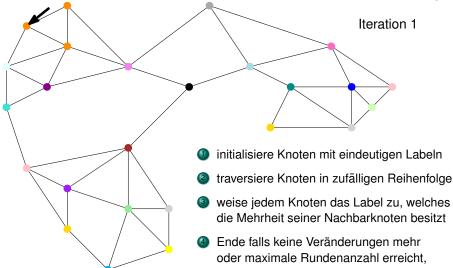
oder maximale Rundenanzahl erreicht,



Einführung

Vorausgehende Forschung ○○○●

000000



Einführung

Vorausgehende Forschung

000000

sonst zurück zu 2

00000

Label Propagation Algorithmus (2007) Iteration 1 initialisiere Knoten mit eindeutigen Labeln traversiere Knoten in zufälligen Reihenfolge weise jedem Knoten das Label zu, welches die Mehrheit seiner Nachbarknoten besitzt

sonst zurück zu 2

Ende falls keine Veränderungen mehr oder maximale Rundenanzahl erreicht,

Label Propagation Algorithmus (2007) Iteration 1

- initialisiere Knoten mit eindeutigen Labeln
- traversiere Knoten in zufälligen Reihenfolge
- weise jedem Knoten das Label zu, welches die Mehrheit seiner Nachbarknoten besitzt
- Ende falls keine Veränderungen mehr oder maximale Rundenanzahl erreicht, sonst zurück zu 2

Vorausgehende Forschung

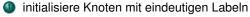
Label Propagation Algorithmus (2007) Iteration 1 initialisiere Knoten mit eindeutigen Labeln traversiere Knoten in zufälligen Reihenfolge weise jedem Knoten das Label zu, welches

sonst zurück zu 2

die Mehrheit seiner Nachbarknoten besitzt

Ende falls keine Veränderungen mehr oder maximale Rundenanzahl erreicht,

Label Propagation Algorithmus (2007) Iteration 1



- 2 traversiere Knoten in zufälligen Reihenfolge
- weise jedem Knoten das Label zu, welches die Mehrheit seiner Nachbarknoten besitzt
- Ende falls keine Veränderungen mehr oder maximale Rundenanzahl erreicht, sonst zurück zu 2

Einführung

Vorausgehende Forschung ○○○●

0000000

Label Propagation Algorithmus (2007) Iteration 1 initialisiere Knoten mit eindeutigen Labeln traversiere Knoten in zufälligen Reihenfolge weise jedem Knoten das Label zu, welches die Mehrheit seiner Nachbarknoten besitzt Ende falls keine Veränderungen mehr

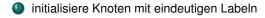
Vorausgehende Forschung ○○○●

OOOOOOO

sonst zurück zu 2

oder maximale Rundenanzahl erreicht,

Label Propagation Algorithmus (2007) Iteration 1



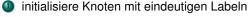
- 2 traversiere Knoten in zufälligen Reihenfolge
- weise jedem Knoten das Label zu, welches die Mehrheit seiner Nachbarknoten besitzt
- Ende falls keine Veränderungen mehr oder maximale Rundenanzahl erreicht, sonst zurück zu 2

Einführung

Vorausgehende Forschung ○○○●

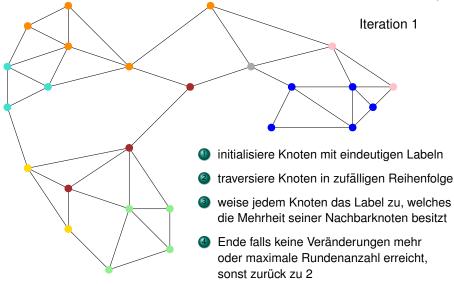
0000000

Label Propagation Algorithmus (2007) Iteration 1



- traversiere Knoten in zufälligen Reihenfolge
- weise jedem Knoten das Label zu, welches die Mehrheit seiner Nachbarknoten besitzt
- Ende falls keine Veränderungen mehr oder maximale Rundenanzahl erreicht, sonst zurück zu 2

Vorausgehende Forschung



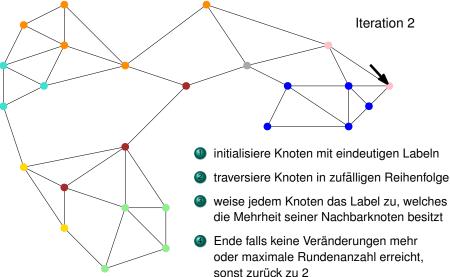
Einführung

Vorausgehende Forschung

000000

Evaluation

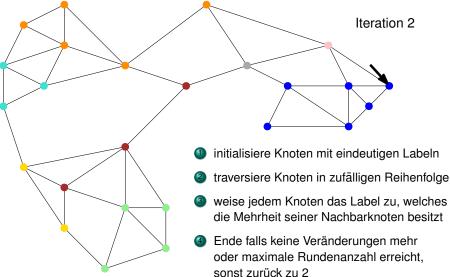
11.07.2018



Einführung

Vorausgehende Forschung

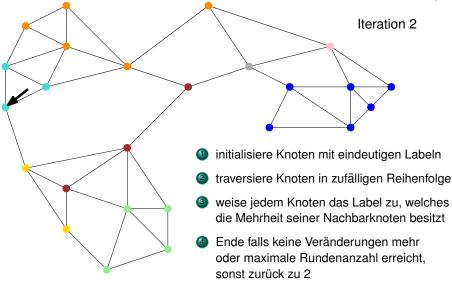
000000



Einführung

Vorausgehende Forschung

0000000

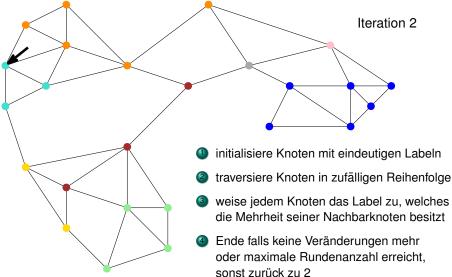


Einführung

Vorausgehende Forschung ○○○●

0000000

evaluation

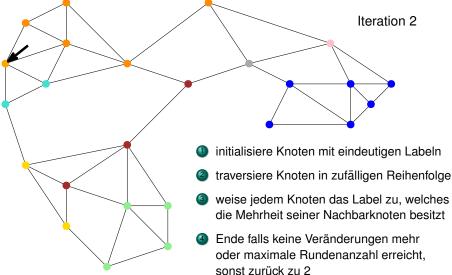


Einführung

Vorausgehende Forschung ○○○●

0000000

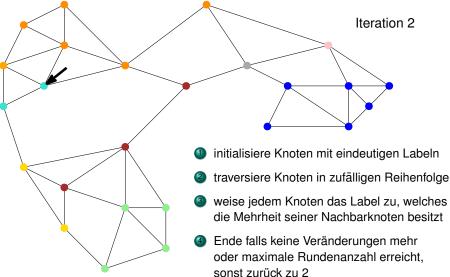
ooooo



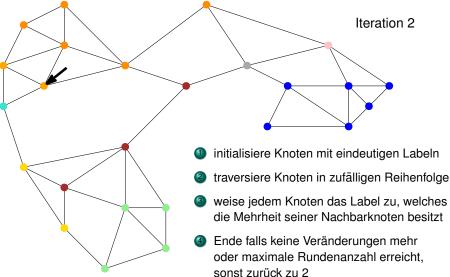
Einführung

Vorausgehende Forschung

000000



Vorausgehende Forschung



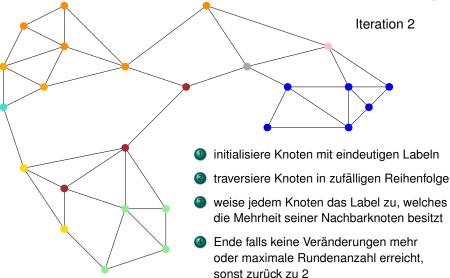
Einführung

Vorausgehende Forschung

000000

Evaluation

11.07.2018



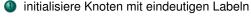
Einführung

Vorausgehende Forschung

000000

ooooo

Label Propagation Algorithmus (2007) Iteration 2



- 2 traversiere Knoten in zufälligen Reihenfolge
- weise jedem Knoten das Label zu, welches die Mehrheit seiner Nachbarknoten besitzt
- Ende falls keine Veränderungen mehr oder maximale Rundenanzahl erreicht, sonst zurück zu 2

Einführung

Vorausgehende Forschung

0000000

ooooo

Label Propagation Algorithmus (2007) Iteration 3 initialisiere Knoten mit eindeutigen Labeln traversiere Knoten in zufälligen Reihenfolge weise jedem Knoten das Label zu, welches die Mehrheit seiner Nachbarknoten besitzt Ende falls keine Veränderungen mehr oder maximale Rundenanzahl erreicht,

Einführung

Vorausgehende Forschung

KaMLSVN

sonst zurück zu 2

Label Propagation Algorithmus (2007) Iteration 4 initialisiere Knoten mit eindeutigen Labeln traversiere Knoten in zufälligen Reihenfolge weise jedem Knoten das Label zu, welches die Mehrheit seiner Nachbarknoten besitzt Ende falls keine Veränderungen mehr

Vorausgehende Forschung

KaMLSVM 0000000

sonst zurück zu 2

oder maximale Rundenanzahl erreicht,

KaMLSVM

Algorithm 1: Überblick

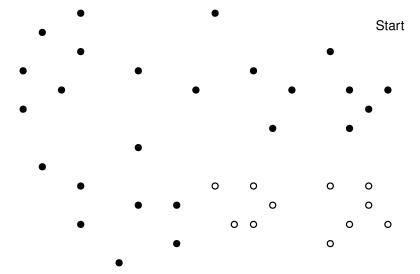
- 1 preprocess data
- 2 build k-fold instances
- 3 foreach k-fold instance do
- use a fraction of the training data as validation data
 - 5 Coarsening
 - Initial Training
 - while levels in the hierarchies do
 - Refinement
 - use the best trained model of all levels as final model
 - evaluate the final model with the test data
- 11 average the results of the k-folds

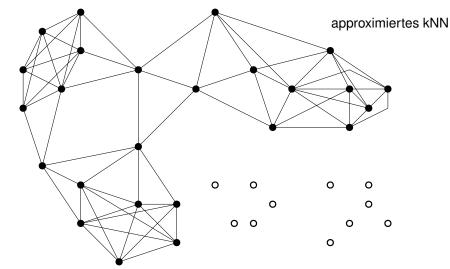
10

Coarsening

positive und negative Klasse separat verarbeiten

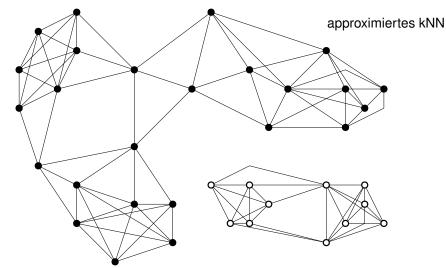
- approximierten k-nearest neighbor Graph aufbauen (FLANN)
- ② Communities finden via Label Propagation
- neues Problem in der Hierarchie speichern
- solange Graph noch nicht klein genug zurück zu 2





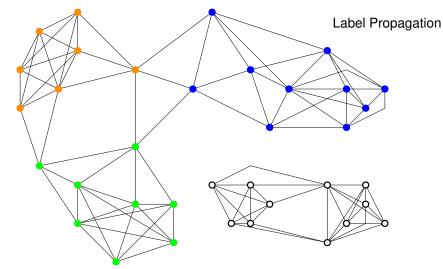
Einführung 00000 Vorausgehende Forschung

KaMLSVM 00●0000



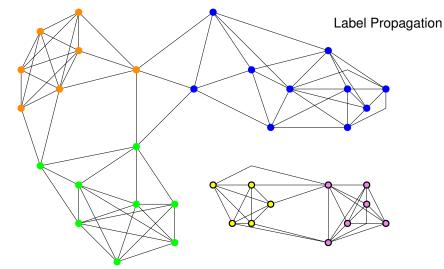
Einführung 00000 Vorausgehende Forschung

KaMLSVM oo●oooo



Einführung 00000 Vorausgehende Forschung

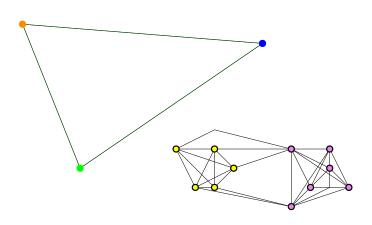
KaMLSVM oo●oooo



Einführung 00000 Vorausgehende Forschung

KaMLSVM 00●0000

Contraction

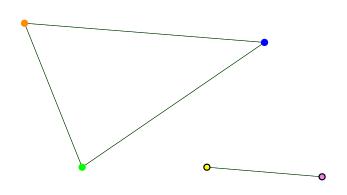


Einführung 000000 Vorausgehende Forschung

Matthias Schmitt - Support Vector Machines via Multilevel Label Propagation

KaMLSVM oo●oooo

Contraction



Matthias Schmitt - Support Vector Machines via Multilevel Label Propagation

Initiales Training

Training auf dem gröbsten Graphen

Parametersuche

- Grid Search
- Uniform Design
- 2-stufig

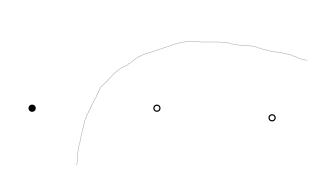
LibSVM zugrunde liegende SVM Bibliothek

Testen auf Validierungsdatensatz um beste Parameter zu identifizieren

Initiales Training - Beispiel

0

Initiales Training - Beispiel



Refinement

Ziel: weitere Level der Hierarchie nutzen & Ergebnisse wiederverwenden rekursiv auf jedem Level trainieren:

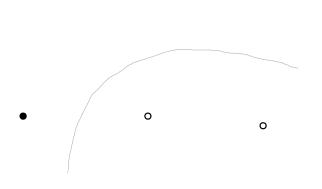
- nur Support Vektoren aus vorherigem Level "nach oben" projizieren
- Erkenntnisse über Parameter des vorherigem Levels wiederverwenden

letztes Trainingergebnis

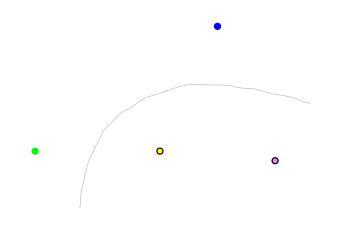


Matthias Schmitt - Support Vector Machines via Multilevel Label Propagation

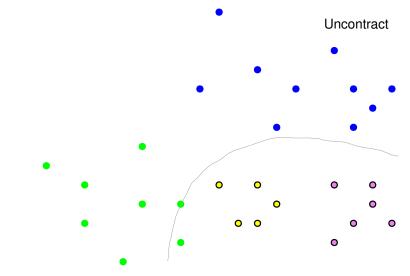
letzte Support Vektoren



letzte Support Vektoren



Matthias Schmitt - Support Vector Machines via Multilevel Label Propagation

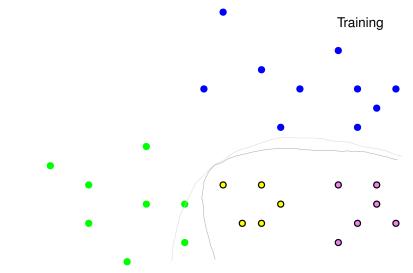


Einführung

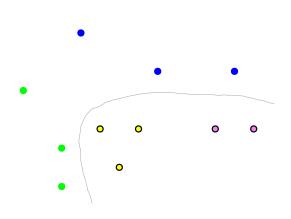
Vorausgehende Forschung

Matthias Schmitt - Support Vector Machines via Multilevel Label Propagation

KaMLSVM 000000



aktuelle Support Vektoren



Matthias Schmitt - Support Vector Machines via Multilevel Label Propagation

Instanzen

Name	Größe	Features	\mathbf{c}_{+}	c^-	Balance
Advertisement	3.279	1.558	459	2.820	0,86
APS failure	76.000	170	1.375	74.625	0,98
Buzz	140.707	77	27.775	112.932	0,80
Census	299.285	41	18.568	280.717	0,94
Cod-rna	59.535	8	19.845	39.690	0,67
EEG Eye State	14.980	14	6.723	8.257	0,55
Forest (Class 1)	581.012	54	221.840	369.172	0,64
Forest (Class 2)	581.012	54	283.301	297.711	0,51
Forest (Class 3)	581.012	54	35.754	369.172	0,94
Forest (Class 4)	581.012	54	2.747	578.265	1,00
Forest (Class 5)	581.012	54	9.493	571.519	0,98
Forest (Class 6)	581.012	54	17.367	563.645	0,97
Forest (Class 7)	581.012	54	20.510	560.502	0,96
Hypothyroid	3.919	21	240	3.679	0,94
Isolet (Class A)	6.919	617	240	5.998	0,96
Letter (Class A)	20.000	16	786	19.266	0,96
Letter (Class B)	20.000	16	766	19.266	0,96
Letter (Class H)	20.000	16	734	19.266	0,96
Letter (Class Z)	20.000	16	734	19.266	0,96
Musk (Clean)	6.598	166	1.017	5.581	0,85
Nursery	12.960	8	4.320	8.640	0,67
Protein	145.751	74	1.296	144.455	0,99
Ringnorm	7.400	20	3.664	3.736	0,50
Skin	245.057	3	50.859	194.198	0,79
Sleep (Class 1)	105.908	13	9.052	96.856	0,91
Twonorm	7.400	20	3.703	3.697	0,50

Klassifizierungsqualität

Dataset	mlsvm-AMG		KaMLSVM	
Dalasel	ACC	G-mean	ACC	G-mean
Advertisement	0,91	0,78	0,94	0,80
APS failure	0,94	0,94	0,94	0,93
Buzz	0,94	0,95	0,94	0,94
Census	0,74	0,80	0,84	0,83
Cod-rna	0,94	0,95	0,94	0,94
EEG Eye State	0,78	0,78	0,78	0,77
Forest (Class 1)	0,73	0,75	0,80	0,80
Forest (Class 2)	0,73	0,73	0,80	0,80
Forest (Class 3)	0,90	0,94	0,93	0,95
Forest (Class 4)	0,94	0,97	0,97	0,98
Forest (Class 5)	0,73	0,79	0,90	0,89
Forest (Class 6)	0,82	0,89	0,90	0,94
Forest (Class 7)	0,83	0,87	0,89	0,93
Hypothyroid	0,93	0,94	0,97	0,85
Isolet (Class A)	0,97	0,99	0,99	0,99
Letter (Class A)	0,99	0,98	0,97	0,96
Letter (Class B)	0,96	0,95	0,94	0,94
Letter (Class H)	0,96	0,88	0,90	0,91
Letter (Class Z)	0,96	0,97	0,96	0,96
Musk (Clean)	0,92	0,92	0,97	0,96
Nursery	1,00	1,00	1,00	1,00
Protein	0,93	0,92	0,96	0,93
Ringnorm	0,98	0,98	0,97	0,97
Skin	0,99	0,99	1,00	1,00
Sleep (Class 1)	0,65	0,64	0,71	0,66
Twonorm	0,97	0,97	0,97	0,97

Zeitvergleich

Matthias Schmitt - Support Vector Machines via Multilevel Label Propagation

Zusammenfassung

- neue Mulitilevel SVM mit Label Propagation
- vergleichbare Klassifizierungsqualität
- Speed-Up von mindestens zwei und bis zu 20

Ausblick

- Coarsening Abbruchkriterium verbessern
- Parallelisierung

Vielen Dank

Matthias Schmitt - Support Vector Machines via Multilevel Label Propagation

Algorithm 2: Überblick

- 1 preprocess data
- build k-fold instances
- 3 foreach k-fold instance do
- 4 use a fraction of the training data as validation data
- build a k-nearest neighbor graph for C^+ and $C^$
 - contract the graphs recursively and build the hierarchies
 - Initial Training

10

- while levels in the hierarchies do
- train a SVM model on the SV of the previous level
 - evaluate on the validation data
 - evaluate of the validation data
- use the best trained model of all levels as final model
- evaluate the final model with the test data
- 13 average the results of the k-folds

Algorithm 3: Initial Training

Input: \mathbf{C}_{c}^{+} , \mathbf{C}_{c}^{-} , VD

Output: model_{best}, SV_{best} , C_{best} , γ_{best}

- 1 evalList := list of evaluated SVM models and parameters
- params₁ ← UD sweep around initial position
- foreach $(C, \gamma) \in params_1$ do
 - (model, SV) \leftarrow train SVM on $\mathbf{C}_c^+ \cup \mathbf{C}_c^-$ using C, γ res ← evaluate model on VD
- evalList.add((res,model,SV, C,γ))
- 7 $(C_{aood}, \gamma_{aood}) \leftarrow \text{evalList.getEntryWithBestResult}()$
- $params_2 \leftarrow UD$ sweep around C_{qood} and γ_{qood}
- foreach $(C, \gamma) \in params_2$ do
- (model, SV) \leftarrow train SVM on $\mathbf{C}_c^+ \cup \mathbf{C}_c^-$ using C, γ 10 res ← evaluate model on VD 11
- evalList.add((res,model,SV, C,γ)) 12
 - $(\mathsf{model}_{\mathit{best}}, \mathsf{SV}_{\mathit{best}}, C_{\mathit{best}}, \gamma_{\mathit{best}}) \leftarrow \mathsf{evalList.getEntryWithBestResult}()$

Klassifikationsqualitätskriterien

accuracy (ACC), sensitivity (SN), specificity (SP), G-mean

$$ACC = rac{TP + TN}{FP + TN + TP + FN}$$
 $SN = rac{TP}{TP + FN}$
 $SP = rac{TN}{TN + FP}$
 $G ext{-mean} = \sqrt{SP * SN}$

TP true positives, correctly classified points of \mathbf{C}^+ FN false negatives, wrongly classified points of \mathbf{C}^+ TN true negatives, correctly classified points of \mathbf{C}^- FP false positives, wrongly classified points of \mathbf{C}^-

Refinement Verbesserung

Dataset	initial		final		KaMLSVM	mlsvm-AMG
	ACC	G-mean	ACC	G-mean	Levels	Levels
Advertisement	0,84	0,87	0,94	0,80	2	3
APS failure	0,96	0,93	0,94	0,93	4	4
Buzz	0,94	0,93	0,94	0,94	4	5
Census	0,76	0,81	0,84	0,83	5	5
Cod-rna	0,93	0,94	0,94	0,94	4	4
EEG Eye State	0,65	0,64	0,78	0,77	3	3
Forest (Class 1)	0,76	0,75	0,80	0,80	5	5
Forest (Class 2)	0,75	0,75	0,80	0,80	5	5
Forest (Class 3)	0,94	0,94	0,93	0,95	5	5
Forest (Class 4)	0,94	0,97	0,97	0,98	5	5
Forest (Class 5)	0,83	0,88	0,90	0,89	5	5
Forest (Class 6)	0,89	0,94	0,90	0,94	5	5
Forest (Class 7)	0,95	0,92	0,90	0,93	5	5
Hypothyroid	0,97	0,87	0,97	0,85	2	3
Isolet (Class A)	0,80	0,89	0,99	0,99	2	3
Letter (Class A)	0,95	0,95	0,97	0,96	3	4
Letter (Class B)	0,93	0,93	0,94	0,94	3	4
Letter (Class H)	0,93	0,89	0,90	0,91	3	4
Letter (Class Z)	0,95	0,95	0,96	0,96	3	4
Musk (Clean)	0,93	0,86	0,97	0,96	2	3
Nursery	1,00	1,00	1,00	1,00	2	3
Protein	0,90	0,92	0,96	0,93	3	5
Ringnorm	0,80	0,80	0,97	0,97	2	3
Skin	1,00	1,00	1,00	1,00	5	5
Sleep (Class 1)	0,89	0,36	0,71	0,66	3	4
Twonorm	0,97	0,97	0,97	0,97	2	3

28/24

Zeitanteil

